OPERATING SYSTEM

LECTURE-1
INTRODUCTION

Introduction-Opraeting
System Concept

What is an operating system?

Early Operating Systems
Simple Batch Systems
Multiprogrammed Batch Systems

Time-sharing Systems

Personal Computer Systems
Parallel and Distributed Systems
Real-time Systems

Computer System Architecture

ape—dri
controlle|

rlnter
ontrolle

system bus

mem ry
controller

What is an Operating System?

An OS is a program that acts an intermediary

between the user of a computer and computer
hardware.

Major cost of general purpose computing is
software.

OS simplifies and manages the complexity of running
application programs efficiently.

Goals of an Operating System

Simplify the execution of user programs and
make solving user problems easier.

Use computer hardware efficiently.
Allow sharing of hardware and software resources.

Make application software portable and versatile.

Provide isolation, security and protection among
user programs.

Improve overall system reliability
error confinement, fault tolerance, reconfiguration.

Why should | study Operating
Systems?

Need to understand interaction between the
hardware and applications

New applications, new hardware..

Inherent aspect of society today

Need to understand basic principles in the design of
computer systems
efficient resource management, security, flexibility

Increasing need for specialized operating systems

e.g. embedded operating systems for devices - cell phones,
sensors and controllers

real-time operating systems - aircraft control, multimedia
services

Systems

e
-

(a) Top-side

Chipcon® CC1000
(b) Bottom-side

Atmel” ATMega128

ternal power
nnector "\,

Virtual
Display

-

51-pin Hiro:
(m

http://images.google.com/imgres?imgurl=wetpc.com.au/html/Assets/jpg/general/WetPC1.jpg&imgrefurl=http://wetpc.com.au/html/newsroom/&h=2774&w=1813&prev=/images%3Fq%3Dwearable%2Bcomputer%26start%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN

Hardware Complexity
Increases

Moore’s Law: 2X
transistors/Chip Every 1.5 years Intel Multicore Chipsets

Dual-core SCC Tile

1875 1280 1885 1380 1995

-
108 Kirrn D00
{ransisiors) e n ml] imips)
Rl & Pesntivm'™ 25 3
TR T e
RAOARE Proos or £
100K S 1.0 g
if_ BOABE W g
@® BO2BE =
A0 ° BOSE 2.1
BOEO 10000
i TnLnt | .01
??%lyear
= 1000 =
o
@ a oo :
S
-
\ I % 52%/year
>
[
IIHII“ Eﬁ!l! iiﬁll iiiiiiﬂ % h
e ontrollel controllel e
£
L
2
10
system bus
controller
1 T T T T T T T T T T T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Software Complexity Increases

[V -
O 5o
n |
°B -
—_ U - | |
5 Y |
O
wn L 20 — [
cC 2 — [_
@) 8 10 |
— ol M M I_l .
Z NASA WindowsWindows Solaris WindowsWindowsWindows RedHat RedHat Windows Vista

space 3.1 NT (1998) 95 g8 NT 5.0 Linux6.2Linux7.1 XP
shuttle (19982) (1992) (1998) (2000) (2001)
ctrl

Computer System
Components

Hardware

Provides basic computing resources (CPU, memory, I/O devices).

Operating System

Controls and coordinates the use of hardware among application programs.

Application Programs

Solve computing problems of users (compilers, database systems, video games,
business programs such as banking software).

Users

People, machines, other computers

11

Abstract_yhiew of _S

12

Operating System Views

Resource allocator

to allocate resources (software and hardware) of the
computer system and manage them efficiently.

Control program

Controls execution of user programs and operation of I/O
devices.

Kernel

The program that executes forever (everything else is an
application with respect to the kernel).

13

Operating System Spectrum

Monitors and Small Kernels
special purpose and embedded systems, real-time systems

Batch and multiprogramming

Timesharing
workstations, servers, minicomputers, timeframes

Transaction systems
Personal Computing Systems
Mobile Platforms, devices (of all sizes)

14

People-to-Computer Ratio Over Time

log (people per computer)

time

streaming
information
to/from physical

year

» world

Early Systems - Bare Machine
(1950s)

Hardware — expensive ; Human — chea

Structure e

Large machines run from console

Single user system
Programmer/User as operator

Paper tape or punched cards

Early software

Assemblers, compilers, linkers, loaders, device drivers, libraries of
common subroutines.

Secure execution

Inefficient use of expensive resources
Low CPU utilization, high setup time.

16

Simple Batch Systems
(1960’s)

Reduce setup time by batching jobs with similar reqwrements

Add a card reader, Hire an operator
User is NOT the operator

Automatic job sequencing
Forms a rudimentary OS.

Resident Monitor : ¢ L
Holds initial control, control transfers to job and then back to monltor
Problem
Need to distinguish job from job and data from program.

17

Supervisor/Operator Control

Secure monitor that controls job processing

Special cards indicate what to do.
User program prevented from performing I/O

Separate user from computer

User submits card deck
cards put on tape

tape processed by operator
output written to tape

tape printed on printer

Problems
Long turnaround time - up to 2 DAYS!!!

Low CPU utilization
I/O and CPU could not overlap; slow mechanical devices.

18

Batch Systems - Issues

Solutions to speed up I/O:

Offline Processing
load jobs into memory from tapes, card reading and line printing are done
offline.

Spooling
Use disk (random access device) as large storage for reading as many input

files as possible and storing output files until output devices are ready to
accept them.

Allows overlap - I/0 of one job with computation of another.

Introduces notion of a job pool that allows OS choose next job to run so as
to increase CPU utilization.

19

Speeding up 1/0

@ Direct Memory Access (DMA)
Y0 Comrmands

/O Devices

Memory

o Channels

/O Commands

......

Memory

20

Batch Systems - 1/0
completion

How do we know that I/O is complete?
Polling:
Device sets a flag when it is busy.
Program tests the flag in a loop waiting for completion of
I/0.
Interrupts:

On completion of I/O, device forces CPU to jump to a
specific instruction address that contains the interrupt service
routine.

After the interrupt has been processed, CPU returns to code
it was executing prior to servicing the interrupt.

21

